Search results for "ion sources"

showing 10 items of 61 documents

First experiments on applying the gasdynamic ECR ion source for negative hydrogen ion production

2017

This article has no abstract. peerReviewed

010302 applied physicsHydrogen ionta114ChemistryPhysicsQC1-99901 natural sciencesIon source010305 fluids & plasmasECR ion sourcesChemical physics0103 physical sciencesAtomic physicshydrogen ionsEPJ Web of Conferences
researchProduct

The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source.

2016

The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the ca…

010302 applied physicsMaterials scienceta114Highly charged ionPlasma01 natural sciencesElectron cyclotron resonanceIon sourcemicrowaves010305 fluids & plasmasIonmikroaallotPhysics::Plasma Physics0103 physical scienceselectron cyclotron resonance ion sourcesplasma chamberAtomic physicsInstrumentationBeam (structure)MicrowaveMicrowave cavityThe Review of scientific instruments
researchProduct

Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source

2016

The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz Aelectron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10- 100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime. peerReviewed

010302 applied physicsMaterials scienceta114Ion beamCyclotron resonancePlasma01 natural sciencesplasma electronsIon sourceElectron cyclotron resonanceFourier transform ion cyclotron resonance010305 fluids & plasmasMagnetic fieldpulsed operation modePhysics::Plasma Physics0103 physical scienceselectron cyclotron resonance ion sourceskinetic instabilitiesAtomic physicsInstrumentationIon cyclotron resonanceReview of Scientific Instruments
researchProduct

Photoelectron Emission from Metal Surfaces Induced by Radiation Emitted by a 14 GHz Electron Cyclotron Resonance Ion Source

2015

Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma. peerReviewed

010302 applied physicsMaterials scienceta114Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCyclotron resonanceBremsstrahlungFOS: Physical sciencesPlasmaElectronphotoelectron emissionRadiation01 natural sciences7. Clean energyElectron cyclotron resonanceIon sourcePhysics - Plasma Physics010305 fluids & plasmasPlasma Physics (physics.plasm-ph)Physics::Plasma Physics0103 physical scienceselectron cyclotron resonance ion sourcesPlasma diagnosticsAtomic physicsInstrumentation
researchProduct

Deviation of H− beam extraction simulation model

2018

Negative hydrogen ion source extraction system development is dependent on accurate and fast simulation methods for modelling the behaviour of ion and electron beams. Traditionally this type of work has been done using ray-tracing extraction codes, such as IBSimu. The plasma extraction model in IBSimu has been observed to under-estimate the charge density near the plasma sheath, leading to incorrect prediction of the current at which the system produces the optimum emittance. It is suspected that this deviation results from the approximations made by the model, neglecting the magnetic field and collisional effects near the sheath region. Results and comparisons to simulations are presented …

010302 applied physicsMaterials scienceta114business.industryExtraction (chemistry)tietokonegrafiikkaplasmafysiikka01 natural sciencesOpticsion sourcesPhysics::Plasma Physicscomputer graphics0103 physical sciencessimulointi010306 general physicsbusinessBeam (structure)plasma sheaths
researchProduct

Power efficiency improvements with the radio frequency H− ion source

2016

CW 13.56 MHz radio frequency-driven H(-) ion source is under development at the University of Jyväskylä for replacing an existing filament-driven ion source at the MCC30/15 cyclotron. Previously, production of 1 mA H(-) beam, which is the target intensity of the ion source, has been reported at 3 kW of RF power. The original ion source front plate with an adjustable electromagnet based filter field has been replaced with a new front plate with permanent magnet filter field. The new structure is more open and enables a higher flux of ro-vibrationally excited molecules towards the plasma electrode and provides a better control of the potential near the extraction due to a stronger separation …

010302 applied physicsMaterials scienceta114ta213Electromagnetbusiness.industryRF power amplifierCyclotronPlasma01 natural sciencesIon sourcelaw.inventionion sourceslawMagnet0103 physical sciencesOptoelectronicsRadio frequencypower efficiency010306 general physicsbusinessInstrumentationElectrical efficiencyReview of Scientific Instruments
researchProduct

New progress of high current gasdynamic ion source (invited).

2016

The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm−3 ) …

010302 applied physicsMaterials scienceta114ta213ion beamsPlasma01 natural sciencesIon sourceElectron cyclotron resonance010305 fluids & plasmaslaw.inventionIonlawGyrotronIonizationgasdynamic ECRIS0103 physical scienceselectron cyclotron resonance ion sourcesThermal emittanceAtomic physicsInstrumentationMicrowaveThe Review of scientific instruments
researchProduct

Electron cyclotron resonance ion sources – physics, technology and future challenges

2017

This article has no abstract. peerReviewed

010302 applied physicsPhysicsECR ion sourcesta114Physics::Plasma PhysicsPhysicsQC1-9990103 physical sciences01 natural sciencesEngineering physicsElectron cyclotron resonance010305 fluids & plasmasIonEPJ Web of Conferences
researchProduct

Broadband microwave emission spectrum associated with kinetic instabilities in minimum-B ECR plasmas

2017

Plasmas of electron cyclotron resonance ion sources (ECRISs) are prone to kinetic instabilities due to the resonant heating mechanism resulting in anisotropic electron velocity distribution. Frequently observed periodic oscillations of extracted ion beam current in the case of high plasma heating power and/or strong magnetic field have been proven to be caused by cyclotrontype instabilities leading to a notable reduction and temporal variation of highly charged ion production. Thus, investigations of such instabilities and techniques for their suppression have become important topics in ECRIS research. The microwave emission caused by the instabilities contains information on the electron e…

010302 applied physicsPhysicsRange (particle radiation)microwave sourcesIon sourcesIon beamta114Highly charged ionPlasmaAstrophysics::Cosmology and Extragalactic Astrophysicsplasma instabilitiesmagnetic fieldsCondensed Matter PhysicsPlasma oscillationmagneettikentät01 natural sciences7. Clean energyElectron cyclotron resonanceIonPhysics::Plasma Physicsmicrowave spectra0103 physical sciencesAtomic physics010306 general physicsMicrowave
researchProduct

Charge breeding at GANIL: Improvements, results, and comparison with the other facilities

2019

International audience; The 1+/n+ method, based on an ECRIS charge breeder (CB) originally developed at the LPSC laboratory, is now implemented at GANIL for the production of Radioactive Ion Beams (RIBs). Prior to its installation in the middle of the low energy beam line of the SPIRAL1 facility, the 1+/n+ system CB has been modified based on the experiments performed on the CARIBU Facility at Argone National Laboratory. Later, it has been tested at the 1+/n+ LPSC test bench to validate its operation performances. Charge breeding efficiencies as well as charge breeding times have been measured for noble gases and alkali elements. The commissioning phase started at GANIL in the second half-y…

010302 applied physicsPhysicsTest benchRange (particle radiation)mechanical instrumentstutkimuslaitteetCyclotronThermal ionization01 natural sciences7. Clean energyIon source010305 fluids & plasmaslaw.inventionNuclear physicsion sourcesUpgradeBreeder (animal)Beamlinenuclear physicslawion beam mass spectrometer0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ydinfysiikkaInstrumentation
researchProduct